Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cells ; 10(5)2021 04 21.
Article in English | MEDLINE | ID: covidwho-1436054

ABSTRACT

Extracellular vesicles (EVs) refer to a heterogenous population of membrane-bound vesicles that are released by cells under physiological and pathological conditions. The detection of EVs in the majority of the bodily fluids, coupled with their diverse cargo comprising of DNA, RNA, lipids, and proteins, have led to the accumulated interests in leveraging these nanoparticles for diagnostic and therapeutic purposes. In particular, emerging studies have identified enhanced levels of a wide range of specific subclasses of non-coding RNAs (ncRNAs) in EVs, thereby suggesting the existence of highly selective and regulated molecular processes governing the sorting of these RNAs into EVs. Recent studies have also illustrated the functional relevance of these enriched ncRNAs in a variety of human diseases. This review summarizes the current state of knowledge on EV-ncRNAs, as well as their functions and significance in lung infection and injury. As a majority of the studies on EV-ncRNAs in lung diseases have focused on EV-microRNAs, we will particularly highlight the relevance of these molecules in the pathophysiology of these conditions, as well as their potential as novel biomarkers therein. We also outline the current challenges in the EV field amidst the tremendous efforts to propel the clinical utility of EVs for human diseases. The lack of published literature on the functional roles of other EV-ncRNA subtypes may in turn provide new avenues for future research to exploit their feasibility as novel diagnostic and therapeutic targets in human diseases.


Subject(s)
Extracellular Vesicles/physiology , Lung Injury/metabolism , Pneumonia, Bacterial/metabolism , Pneumonia, Viral/metabolism , RNA, Untranslated/physiology , Animals , Biomarkers/metabolism , Humans , Lung/metabolism , Lung/pathology
2.
Am J Infect Control ; 48(8): 883-889, 2020 08.
Article in English | MEDLINE | ID: covidwho-361418

ABSTRACT

OBJECTIVE: The past 4 months, the emergence and spread of novel 2019 SARS-Cov-2 (COVID-19) has led to a global pandemic which is rapidly depleting supplies of personal protective equipment worldwide. There are currently over 1.6 million confirmed cases of COVID-19 worldwide which has resulted in more the 100,000 deaths. As these numbers grow daily, hospitals are being forced to reuse surgical masks in hopes of conserving their dwindling supply. Since COVID-19 will most likely have effects that last for many months, our nationwide shortage of masks poses a long term issue that must be addressed immediately. METHODS: Based on a previous study by Quan et al., a salt-based soaking strategy has been reported to enhance the filtration ability of surgical masks. We propose a similar soaking process which uses materials widely available in anyone's household. We tested this method of pretreating a variety of materials with a salt-based solution by a droplet test using fluorescently stained nanoparticles similar in size to the COVID-19 virus. RESULTS: In this study, we found that paper towels and surgical masks pretreated with the salt-based solution showed a noticeable increase in filtration of nanoparticles similar in size to the COVID-19 virus. We also show that the TWEEN20 used by Quan et al. is not a critical component for the solution, and using salt alone in solution still provides a dramatically increased level of protection. CONCLUSIONS: We believe this method will allow for healthcare workers to create a disposable added layer of protection to their surgical masks, N95s, or homemade masks by using household available products. Adoption of this method may play an essential role in ensuring the safety of healthcare workers during the COVID-19 pandemic and any pandemics that may arise in the future.


Subject(s)
Coronavirus Infections/prevention & control , Filtration/methods , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Masks/virology , Pandemics/prevention & control , Personal Protective Equipment/microbiology , Pneumonia, Viral/prevention & control , Betacoronavirus/pathogenicity , COVID-19 , Health Personnel , Humans , SARS-CoV-2 , Sodium Chloride/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL